skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rose, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a simulation of the time-domain catalog for the Nancy Grace Roman Space Telescope’s High-Latitude Time-Domain Core Community Survey. This simulation, called the Hourglass simulation, uses the most up-to-date spectral energy distribution models and rate measurements for 10 extragalactic time-domain sources. We simulate these models through the design reference Roman Space Telescope survey: four filters per tier, a five-day cadence, over 2 yr, a wide tier of 19 deg2, and a deep tier of 4.2 deg2, with ∼20% of those areas also covered with prism observations. We find that a science-independent Roman time-domain catalog, assuming a signal-to-noise ratio at a max of >5, would have approximately 21,000 Type Ia supernovae, 40,000 core-collapse supernovae, around 70 superluminous supernovae, ∼35 tidal disruption events, three kilonovae, and possibly pair-instability supernovae. In total, Hourglass has over 64,000 transient objects, 11,000,000 photometric observations, and 500,000 spectra. Additionally, Hourglass is a useful data set to train machine learning classification algorithms. We show that SCONE is able to photometrically classify Type Ia supernovae with high precision (∼95%) to az> 2. Finally, we present the first realistic simulations of non-Type Ia supernovae spectral time series data from Roman’s prism. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Phosphatidylinositides constitute only 1%–3% of plasma membranes but play vital roles in cellular signaling. In particular, phosphatidylinositol 4,5-bisphosphate (PIP2) is involved in processes such as cytoskeleton organization and ion channel regulation. Pleckstrin homology (PH) domains are modular domains found in many proteins and are known for their strong affinity for PIP2 headgroups. The role of lipid composition in PH domain binding to PIP2, particularly the inclusion of phos phatidylserine (PS), is not well understood. This study explores the mechanisms of PH domain binding to PIP2 using fluores cence spectroscopy, Fourier transform infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations. We find that anionic PIP2 and PS alter the interfacial environment compared to phosphatidylcholines. Additionally, the PH domain promotes the localization of anionic lipid domains upon binding. Our results highlight the role of PSinlipid domain formation within membranes and its potential influence on protein binding affinities and lipid geometries. Spe cifically, we discovered a strong interaction between PIP2 and PS whereby hydrogen bonding within these anionic lipids drives localization in the membrane. This interaction also regulates protein binding at the membrane interface. Our findings suggest that cooperativity between PIP2 and PS is key to the formation of localized lipid domains and the recruitment of proteins such as the PH domain of phospholipase C-d1 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. ABSTRACT Recent cosmological analyses measuring distances of type Ia supernovae (SNe Ia) and baryon acoustic oscillations (BAO) have all given similar hints at time-evolving dark energy. To examine whether underestimated SN Ia systematics might be driving these results, Efstathiou (2025) compared overlapping SN events between Pantheon+ and DES-SN5YR (20 per cent SNe are in common), and reported evidence for an $$\sim$$0.04 mag offset between the low- and high-redshift distance measurements of this subsample of events. If this offset is arbitrarily subtracted from the entire DES-SN5YR sample, the preference for evolving dark energy is reduced. In this paper, we show that this offset is mostly due to different corrections for Malmquist bias between the two samples; therefore, an object-to-object comparison can be misleading. Malmquist bias corrections differ between the two analyses for several reasons. First, DES-SN5YR used an improved model of SN Ia luminosity scatter compared to Pantheon+ but the associated scatter-model uncertainties are included in the error budget. Secondly, improvements in host mass estimates in DES-SN5YR also affected SN standardized magnitudes and their bias corrections. Thirdly, and most importantly, the selection functions of the two compilations are significantly different, hence the inferred Malmquist bias corrections. Even if the original scatter model and host properties from Pantheon+ are used instead, the evidence for evolving dark energy from CMB, DESI BAO Year 1 and DES-SN5YR is only reduced from 3.9$$\sigma$$ to 3.3$$\sigma$$, consistent with the error budget. Finally, in this investigation, we identify an underestimated systematic uncertainty related to host galaxy property uncertainties, which could increase the final DES-SN5YR error budget by 3 per cent. In conclusion, we confirm the validity of the published DES-SN5YR results. 
    more » « less
  4. Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are σ Ω M , stat + sys Λ CDM = 0.017 in a flat ΛCDM model, and ( σ Ω M , σ w ) stat + sys w CDM = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time. 
    more » « less
  5. null (Ed.)
  6. Abstract We presentgrizphotometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImgand 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z) range ever covered by a single SN survey (0.1 <z< 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImgforced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YRand doi:10.5281/zenodo.12720777. 
    more » « less
  7. Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
  8. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less